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We have devised an isotropic interaction potential that gives rise to negative thermal expansion (NTE) behavior
in equilibrium many-particle systems in both two and three dimensions over a wide temperature and pressure
range (including zero pressure). An optimization procedure is used in order to find a potential that yields a
strong NTE effect. A key feature of the potential that gives rise to this behavior is the softened interior of its
basin of attraction. Although such anomalous behavior is well-known in material systems with directional
interactions (e.g., zirconium tungstate), to our knowledge, this is the first time that NTE behavior has been
established to occur in single-component many-particle systems for isotropic interactions. Using constant-
pressure Monte Carlo simulations, we show that as the temperature is increased, the system exhibits negative,
zero, and then positive thermal expansion before melting (for both two- and three-dimensional systems). The
behavior is explicitly compared to that of a Lennard-Jones system, which exhibits typical expansion upon
heating for all temperatures and pressures.

I. Introduction phonon properties of the crystal, specifically low-frequency
phonon modes that may propagate without distorting the; WO
tetrahedra and Zr{bctahedra that make up the structéi@ther
examples of materials that exhibit NTE behavior arg\WgO;,2
diamond and zincblende semiconductbras well as Sg
(WQ4)3.19 An essential feature of the aforementioned systems
is their relative openness (low densities) as compared with highly
coordinated structures.

Geometries for multicomponent composite systems that give
rise to extreme NTE behavior have been designed using
topology optimization methodsin these cellular materials, each
of three component materials has a nonnegative thermal
expansion coefficient, but upon heating, the materials (two solid
phases and one void phase) undergo overall contraction. An
essential feature of these structures is their local non-convex
)(re-entrant) “cells”. This is an example of an inverse problem

can aid in the longevity of space structures, bridges, and piping in the sense that opt_imal microst_ructl_Jres are found that y_ield a
systemé It has been proposed that materials with very large t@rgéted macroscopic property (in this case, NTE behavior).
thermal expansion coefficients may function as actuators, and N Previous worki> we investigated whether isotropic
those with negative thermal expansion coefficents may be of Potentials could be found that produce as ground states low-
use as thermal fastenérs. coordinate crystal structures (e.g., the honeycomb lattice in two
Perhaps the most common example of a solid exhibiting NTE dlmenS|ons_and the diamond lattice) using inverse optlm_lzatlon
is that of ice, which contracts upon melting into liquid water. Methodologies. Here, we propose a solution to a different inverse
In its solid form, hexagonal ice also undergoes negative thermalProblem: finding an isotropic pair potential that produces a
expansion for very low temperature&This behavior is aresult ~ classical many-particle system in a maximally coordinated,
of the volume dependence of the transverse normal modesmgle-component crystalline state that_under_goes NTE under a
(phonon) frequencies of this material, characterized by a Wide temperature and pressure range (including zero pressure).
negative Grutieen parametef Another example of a material This is a counterintuitive proposition because conventional
that undergoes NTE is zirconium tungstate, 268 which w_|sdom _suggests t_hat open structures composed of particles with
exhibits this behavior for an extremely large temperature range, Nighly directional interactions are necessary to observe NTE.
namely, 0.3-1050 K7 Again, this has been attributed to the Nonetheless, there is no fundamental reason for excluding this
phenomenon in highly coordinated isotropic systems. Colloidal
t Part of the “Giacinto Scoles Festschrift”. dispersions are a possible experimental test-bed system for NTE
* Corresponding author. behavior, as in these systems interparticle interaction potentials

* Department of Physics. . L . .
§ Department of Chemisry. may be designed by combining several interaction types (e.g.,

I Program in Applied and Computational Mathematics and PRISM.  €lectrostatic repulsion, depletion, and dispersidrlthough
D Princeton Center for Theoretical Physics. the potential proposed in this paper is not explicitly constructed

Control of thermal expansion properties of materials is of
technological importance due the need for structures to withstand
ambient temperature variations. It is also of fundamental interest
because of the variety and intricacy of qualitatively different
mechanisms by which materials expand or contract upon
heating! In particular, negative thermal expansion (NTE)
behavior, a well-known but unusual phenomenon in many-
particle systems, has been observed only in multicomponent
materials with open unit cell structures in which the bonding
of component particles is highly directional. Necessarily a result
of anharmonicity of the potential energy of the system, the
mechanism by which a material contracts upon heating may be
highly intricate?

In the technological realm, materials with zero thermal
expansion (those that do not expand or contract upon heating
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Figure 1. Schematic depiction of an isotropic pair interaction with a 2 1 2 3

softened interior in its basin of attraction. Thermal fluctuations cause f

the average nearest-neighbor distance to decrease, resulting in an overaffigure 2. Lennard-Jones potential, as given in eq 3, with=e and
contraction of the system upon heating. Here, the horizontal black lines oL = 1/2%. As can be easily seen, the curvature of the potential is
within the basin represent temperature values, and the broken linegreater to the left of the minimum at= 1 than to the right. As a

represents the thermally averaged nearest-neighbor distance. result, when the temperature of a system interacting via this potential
is increased, thermal fluctuations cause the average nearest-neighbor

from known colloidal interactions, it is possible that future distance to increase.
developments will allow for such a potential to be devised.

We have found that a sufficient condition for a potential to
give rise to a system with NTE behavior is that it exhibits a
softened interior core within a basin of attraction (as depicted
schematically in Figure 1). Such behavior of the potential may
be characterized by its third derivative with respect to position
at its minimum: if this is positive, the curvature is an increasing
function of position, and the inner part of the basin is “softer”
than the outer part. The potential function proposed in this paper 115
thus belongs to a class of functions that give rise to NTE az\—/(a—}r/) (2)
behavior; it will henceforth be called the softened-interior-core, P

whereV, is a interaction potential that is a purely radial function,
and m is the mass of each particle, taken as unity for the
remainder of this paper. Henceforth, we employ the reduced
temperature of the systemi* = kgT/e, where T is the
temperaturekg is Boltzmann’s constant, andis a parameter
in the pair potential with units of energy.

The isobaric thermal expansion coefficientis defined as

or “SIC” potential. It is constructed by using a type Of \hereV is the volume of the system, amlis pressure. Of
the distance between particles). As will be explained in the next A construction of the SIC Potential. In order to motivate
enon, we perform Gibbs-ensemble (constant number of particles,| ennard-Jones potential:
oL\ [ow)®

(T) T )
and pressure. We find that, at low temperature, the system has
of temperature before melting. As a basis for comparison, we | ennard-Jones potential for the remainder of this paper. For a
In section Il, we discuss how the SIC potential was |attice, and in three dimensions, it is a maximally coordinated
IV, we summarize the results and discuss future work pertaining atr = 1 is significantly greater than that to the right. This is
Il. Theoretical Background

We consider classicdll-particle systems (in two and three the distribution of nearest-neighbor distances to be skewed to
should not qualitatively change if the pressure is positive. This

optimization procedure wherein parameters are chosen such thagoyrse o is negative if the system contracts upon heating. We
the potential will give rise to strong NTE behavior (via alarge, seek an interaction potential that gives rise to this effect in an
positive third derivative of the pair potential with respectfo  gquilibrium sense.
section, as the temperature is increased in such systems, th@oy we devise a pair interaction potential that gives rise to
nearest-neighbor distances fluctuate about smaller average\egative thermal expansion for two- and three-dimensional
distances, causing NTE behavior. To demonstrate this phenom-many.-particle systems in thermal equilibrium, consider first the
temperature, and pressure, or “NPT”) Monte Ckriimulations
in both two and three dimensions in which the volume of the
system is computed as a function of both ambient temperature V() = ey
its strongest negative thermal expansion. As the temperature iSwhereeLJ > 0 ando; > 0 are energy and length parameters,
increased, the system contracts further until it reaches arespectively. This potential is shown in Figure 2, with = ¢
minimum in volume (or area) and then expands as a function and g, = 1/2/6. We adopt this parameter choice for the
perform similar calculations using the Lennard-Jones potential, system oiN particles interacting via the Lennard-Jones potential,
which exhibits conventional behavior in that it Only eXpandS as where both the temperature and the pressure are zero, the
temperature is increased. equilibrium configuration in two dimensions is the triangular
constructed. In section I, we discuss the details and results of |attice (the hexagonal close-packed or hcp) with the nearest
the energetics calculations and NPT simulations, both for the neighbors lying within the basin of attraction of the potential.
SIC potential and for the Lennard-Jones potential. In section Clearly, the curvature of the potential to the left of the minimum
to inverse problems in many-particle systems. reflected in the negative third derivative of the potential at its
minimum, that is, V(1) = —1512. As a result, as the
temperature is increased from zero, thermal fluctuations cause
dimensions) with interactions that are pairwise additive and iso- the right. Thus, in thermal equilibrium, the particles are farther
tropic. Denoting the positions of the particles hy ..., ry and apart on average, and so the system should expand upon a
their momenta bypy, ..., pn, the Hamiltonian of the system is  temperature increase, thatés> 0. The behavior of the system
N N P is the mechanism for positive thermal expansion in this system.
H( gy ooos T Poy s Py) = z Vi(ri=rD+y — Q) Here, we construct an isotropic pair potential with a softened
<] &1 2m interior by finding a function with a strongly positive third

2
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Figure 3. SIC potential, as given in eq 6, with the paramet&rs

9.30865,B = 0.1,C =9A, ry = 1, em = ¢, andoy = 0.5. As can
easily be seen, the curvature of the potential is greater to the right of
the minimum atr = 1.00069 than to the left. As a result, when the

Figure 4. Two-dimensional lattice sums for the Lennard-Jones potential
including the triangular, square, and honeycomb lattices. The lowest
overall energy stucture is the triangular lattice, which is thus the stable

structure at zero pressure. From the Maxwell construction, we find that
ithe pressure range of stability at zero temperature $s@ < o, and
Yhe range of stability in specific area is©a < 0.85.

temperature of a system interacting via this potential is increased
thermal fluctuations cause the average nearest-neighbor distance

decrease.
9 . T i T sy T L T
derivative (i.e., increasing curvature) within a basin of attraction i ‘"l | —
(which should result in NTE behavior, as described in section 6 i “--+ bee -
I). We choose the Morse potential as a starting point, which is B H o 0H ;
; L 2| : \ — — simple cubic
given by g3 i : diamond ]
§ -I-lll \ o ;‘lfﬁ:lﬂt%cxa onal
Viu(r) = e {expl2(y — 1oyl — 2 explty — r/oyl} (4) ‘% 0__ o : g |
: g3+ '
wherery > 0 andoy > 0 are adjustable parameters. It has a s 7|
basin of attraction with a minimum a;, and its third derivative 6F
evaluated at its minimum is negative; that\é)(rv) = —6ew/ i AT . . .
om®. Since we seek a potential with a positive third derivative 005 1 1.5 2 2.5 3

in its basin, modification of this potential is necessary. We thus S

use a rescaling function for distance defined by Figure 5. Three-dimensional lattice sums for the Lennard-Jones
potential including the fcc, bec, hep, simple cubic, diamond, wurtzite,
and simple hexagonal lattices. The lowest overall energy stucture is
the hcp lattice, which is thus the stable structure at zero pressure. From
the Maxwell construction, we find that the pressure range of stability
at zero temperature is & p < 1240, and the range of stability in
specific area is 0.33% v < 0.65.

r*(r) = Ar + B {log cosh C(r —r,,)] — log coshCr,,)} (5)

whereA > 0,B > 0, andC > 0 are free parameters such that
A — BC > 0. This function has the property that for< ry, it
asymptotes to a straight line going through the origin with slope
A — BC, but forr > ry, it quickly asymptotes to a straight line
of slopeA + BC. We define the softened-interior-core (SIC)
potential to be

argument is independent of whether the system in question is
two or three-dimensional. Thus, we expect the same potential
(eq 6) to yield NTE behavior in both dimensions.

This rescaling procedure could have been applied to the
Lennard-Jones potential rather than the Morse potential. How-
ever, it was found that since the former possesses a much more
. o - T _ strongly negative third derivative at its minimum than the latter
This potential is plotted in Figure 3 with = 9.30865,8 = (when their minima are at the same position and depth), the

0.1,C=9A v =1, em = ¢, andon = 0.5. With this choice 5y "o ntial is more suitable for exhibiting a strongl
of parameters, the function is such that its curvature is greater. P 9 gly

to the right of its minimum, at = 1.00069, than to the left, increasing curvature within its attractive basin.
and it has a third derivative df’g)c(rM) = 1.13660x 1CPey. . .

Note that the parameter values have been chosen such that thigl' Results and Discussion
third derivative is quite large, with the intention of producing In this section, we present lattice sums (Madelung energies
strong NTE behavior. In this sense, optimization of the potential as a function of specific area or volume for a number of crystal
is performed over the space of functions defined by eqs 5 andstructures), for the Lennard-Jones and SIC potential systems in
6. The first term on the right side in eq 6 yields a stiffer core two and three dimensions. We thus determine the low temper-
than what would otherwise have been present. As we show inature thermodynamically stable crystal structure for each, and
section lll.A., this has the effect of causing a maximally using the Maxwell constructiol’, we ascertain the zero-
coordinated structure (face-centered cubic or fcc) to be the temperature range of stability in pressure. In this section, we
energetically stable structure at zero pressure. This ensures thaiakee = 1.

the nearest neighbor is located near the bottom of the potential A. Energetics of the Lennard-Jones and SIC Potential.
well. Farther neighbors interact only very weakly. Because of The lattice sums for the Lennard-Jones systems in two and three
the softened interior within the basin of attraction of the SIC dimensions are shown in Figures 4 and 5, respectively. In the
potential, given in eq 6, thermal fluctuations cause nearest- two-dimensional case, the Madelung energies of three crystal
neighbor distances to decrease, on average. This has the effedtructures (the triangular lattice, square lattice, and honeycomb
of causing an overall contraction of the system. Note that this lattice) are plotted as a function of specific araaThe lowest

Vo) = ey (7] + V() ©
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Figure 6. Two-dimensional lattice sums for the SIC potential including temperature, T

the triangular, square, and honeycomb lattices. The lowest overall Figure 8. Specific area as a function of temperature for a number of
energy structure is the triangular lattice, which is thus the stable structure different pressure values for the two-dimensional Lennard-Jones system.
at zero pressure. From the Maxwell construction, we find that the These results are obtained from NPT Monte Carlo simulations Mith

pressure range of stability at zero temperature is f < o, and the = 1040 particles and periodic boundary conditions. In its crystalline
range of stability in specific area is ® a < 0.87. (triangular) state, this system expands when temperature is increased
for all pressures and temperatures. Note that kinks in the curves indicate
SRt T 7 T — melting of the crystal.
L 1 - =<0 bee
4+ Lyl === hep . . : :
I i — — simple cubic specific area is 0< a < 0.87. In the three-dimensional SIC
2k o= ﬁﬁﬁ?g system, the maximally coordinated structures are again the most
. ... simple hexagonal stable and extremely close in energy. However, in this case, it

— is the fcc lattice which has the lowest overall energy. Note that
the stiff-core term in the potentialsic, the first term on the

energy/particle, E
7

E 8 right-hand side of eq 6, is essential for the maximally coordi-
r I nated structures to have lower energies than the other lattices.
“4r 7 Without this term, lower-coordinated structures are energetically
‘6' i | stable at specific volumes for which several neighbor distances

L i i | L | i
0 0.5 L . 1.5] 2 2.5 3 may fall within the basin of attraction of the potential. It follows
IR that the argument made in section II.A motivating construction

Figure 7. Three-dimensional lattice sums for the SIC potential of the SIC potential as a candidate for NTE behavior would
including the fcc, bee, hep, simple cubic, diamond, wurtzite, and simple not hold in this case

hexagonal lattices. The lowest overall energy stucture is the hcp lattice, h di . h disti
which is thus the stable structure at zero pressure. From the Maxwell In _t ree . Ime_nSIOQS, there are _tWO_ istinct pressure and
construction, we find that the pressure range of stability at zero density regions in which the fcc lattice is stable; however, we

temperature is 6< p < 4.5, and the range of stability in specific area are only interested in the one in which the nearest neighbor
is 0.70< » < 0.71. There is another region of stability of this system falls within the basin of attraction of the potential. For this
at significantly smaller specific volume, but this is irrelevant to the region, the pressure range of stability at zero temperature of
present work. the fcc lattice in the three-dimensional case is § < 4.5, and

the specific volume range of stability is 0.720v < 0.71.
overall energy stucture is the triangular lattice, which is thus  B. NPT Monte Carlo Simulation Results. Monte Carlo
the most stable structure at zero pressure. From the Maxwellsimulations were run in the NPT ensemble on the two- and
construction, we find that the pressure range of stability at zero three-dimensional Lennard-Jones and SIC systems for a number
temperature is &< p < o, and the range of stability in specific ~ of pressures and temperatures. In all simulations, Monte Carlo
area is 0< a < 0.85. The lattice sums for the three-dimensional sampling is carried out until equilibrium is achieved, after which
system are plotted in Figure 5, with the Madelung energies of the fluctuating area/volume is repeatedly sampled until a
seven crystals being plotted (fcc, body-centered cubic (bcc), hep,sufficiently precise average is obtained. In both two-dimensional
simple cubic, diamond, wurtzite, and simple hexagonal lattices). systems, the triangular lattice was used Witk 1020 particles
The maximally coordinated structures, namely, fcc and hcp, in a rectangular simulation cell with periodic boundary condi-
clearly have the lowest energies overall and are thus the stabletions imposed. In both three-dimensional systems, the fcc lattice
structures at zero pressure. These two lattices are extremely closeas used withN = 864 in a cubic cell also with periodic
in energy, although the hcp has the lower energy for specific boundary conditions. Note that in the case of the Lennard-Jones
areas for which the nearest neighbor is near the bottom of thesystem, the hcp, not the fcc, lattice is the thermodynamically
basin of attraction, which is the regime we study in this paper. stable structure. However, we employ the latter in simulations

Its pressure range of stability at zero temperature s P < in order to directly compare the results to those of the SIC
1240, and its range of stability in specific volume is 03% system. This choice is justified because of the extreme closeness
< 0.65. Lattice sums for the SIC potential systems in two and in Madelung energies of the fcc and hcp lattices. To confirm
three dimensions (with parameteks= 9.30865B = 0.1,C = that the maximally coordinated lattices were indeed the ground

9A, ry = 1, em = ¢, andoy = 0.5) are shown in Figures 6 and  states for each of the four systems discussed here, annealing
7. For both cases, the same lattices are plotted as in the Lennardsimulations were performed in which each system was cooled
Jones case. As in the two-dimensional Lennard-Jones systemthrough its freezing point. In each case, a maximally coordinated
the triangular lattice has the lowest overall energy and is thus lattice resulted as the appropriate equilibrium crystal state.

the zero-pressure stable structure. The pressure range of stability The area/volume dependence on temperature of the Lennard-
at zero temperature is ® p < « and the range of stability in ~ Jones systems in two and three dimensions is shown in Figures
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Figure 9. Specific volume as a function of temperature for a number
of different pressure values for the three-dimensional Lennard-Jones
system. These results are obtained from NPT Monte Carlo simulations
with N = 864 particles and periodic boundary conditions. In its
crystalline (fcc) state, this system expands when temperature is increase
for all pressures and temperatures. Note that the “kinks” in the curves
indicate melting of the crystal.
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Figure 10. Specific area as a function of temperature for a number of
different pressure values for the two-dimensional SIC system. These
results are obtained from NPT Monte Carlo simulations Wity 1040
particles and periodic boundary conditions. In its crystalline (triangular)
state, this system undergoes NTE for low temperatures, but as

temperature is increased, thermal expansion passes through zero and

then becomes positive. Note that the “kinks” in the curves indicate
melting of the crystal.
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Figure 12. Section of two configurations of the SIC system, one at
T* = 0.0 (dark) and the other & = 0.3 (light). The configurations
are snapshots taken from NPT Monte Carlo simulations. Arrows indicate
the displacement of the particles upon heating from the former
temperature to the latter. The ambient pressupe=is1.0. The system
appears to undergo a simple rescaling.
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Figure 13. Radial distribution function for the SIC system in three
dimensions ap = 1.0 for three temperature$* = 0.1, 0.2, and 0.3.

As a result of the increasing curvature of the SIC potential, given in
eq 6, near its minimum, the first peak is increasingly skewed to smaller

r as the temperature is increased. The second peak is not present in the
perfect fcc lattice and represents a shearing of the system.

Simulation results for the SIC potential systems in two and
three dimensions (with parameter valdes 9.308658 = 0.1,
C=09A v =1, em = ¢, andoy = 0.5) are shown in Figures
10 and 11, respectively. The data show that for low temperature
and for each pressure value (amagmg- O, 0.5, 1.0, 1.5, 2.0,
and 2.5), in both two and three dimensions, the system contracts.
At a certain pressure-dependent temperature, the thermal expan-
sion coefficent passes through zero and becomes positive (at
the minima of the curves). At higher temperatures, the system

of different pressure values for the three-dimensional SIC system. TheseUndergoes positive thermal expansion until it melts. The

results are obtained from NPT Monte Carlo simulations Wtk 864
particles and periodic boundary conditions. In its crystalline (fcc) state,

temperature at which zero thermal expansion is achieved is an
increasing function of the pressure.

this system undergoes NTE for low temperatures, but as temperature  For the two-dimensional SIC system, we show in Figure 12

is increased, thermal expansion passes through zero and then becom
positive. Note that the “kinks” in the curves indicate melting of the
crystal.

8 and 9, respectively. The plots show results for a number of
pressure valuep = 0, 0.5, 1.0, 1.5, 2.0, and 2.5. The data

%o configurations of the system at temperatufes= 0.0 and
T* = 0.3, with both at pressurp = 1.0. Arrows show the
direction that the particles move when the temperature is
increased fronm* = 0.0 toT* = 0.3.

The radial distribution functiorg(r), is plotted for the three-

show that, in both cases, the solid expands until it melts. The dimensional case in Figure 13, for pressypre= 1.0 and

sharp bends or “kinks” in the curves indicate the first-order
melting transition.

temperature3* = 0.1, 0.2, and 0.3. While the first peak (near
r = 1) appears to reach its maximum at nearly the same distance
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for each temperature, the left tail of the first peak extends further challenging open problem is to find an isotropic pair potential
and further to the left as temperature is increased. This is anthat produces a substance that contracts upon melting and then
indicator of the NTE mechanism of the system. Here, thermal continues to contract over some temperature range (as is the
fluctuations cause the nearest-neighbor distance distribution tocase in water). Last, there is the challenge of designing an
widen, but the increasing curvature asincreases of the isotropic pair potential that yields a system that freezes into a
potential, Vsic, causes this distribution to be skewed toward crystalline state upon an increase in temperature (“inverse
lowerr. The average volume of the system decreases as a resultmelting”), over a wide temperature and pressure range. Both
Note that this is exactly the mechanism of negative thermal isotopes of helium exhibit this prope§2*and simulations have
expansion in the two-dimensional SIC system as well. Figure shown that a modified Gaussianore interaction does as wéd.
13 also shows an anomalous second peak not present in thé his counterintuitive behavior is of fundamental interest because
radial distribution function of the fcc lattice. This indicates that it challenges the conventional wisdom of equilibrium fltid
in additon to the volume change, the system undergoes asolid phase transitions.
shearing as temperature is increased from zero.
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In this paper, we have proposed an isotropic pair interaction
potential for a system of classically interacting particles that
gives rise to negative thermal expansion in maximally coordi-
nated lattices in both two and three dimensions. Previously, this
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