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We have devised an isotropic interaction potential that gives rise to negative thermal expansion (NTE) behavior
in equilibrium many-particle systems in both two and three dimensions over a wide temperature and pressure
range (including zero pressure). An optimization procedure is used in order to find a potential that yields a
strong NTE effect. A key feature of the potential that gives rise to this behavior is the softened interior of its
basin of attraction. Although such anomalous behavior is well-known in material systems with directional
interactions (e.g., zirconium tungstate), to our knowledge, this is the first time that NTE behavior has been
established to occur in single-component many-particle systems for isotropic interactions. Using constant-
pressure Monte Carlo simulations, we show that as the temperature is increased, the system exhibits negative,
zero, and then positive thermal expansion before melting (for both two- and three-dimensional systems). The
behavior is explicitly compared to that of a Lennard-Jones system, which exhibits typical expansion upon
heating for all temperatures and pressures.

I. Introduction

Control of thermal expansion properties of materials is of
technological importance due the need for structures to withstand
ambient temperature variations. It is also of fundamental interest
because of the variety and intricacy of qualitatively different
mechanisms by which materials expand or contract upon
heating.1 In particular, negative thermal expansion (NTE)
behavior, a well-known but unusual phenomenon in many-
particle systems, has been observed only in multicomponent
materials with open unit cell structures in which the bonding
of component particles is highly directional. Necessarily a result
of anharmonicity of the potential energy of the system, the
mechanism by which a material contracts upon heating may be
highly intricate.2

In the technological realm, materials with zero thermal
expansion (those that do not expand or contract upon heating)
can aid in the longevity of space structures, bridges, and piping
systems.3 It has been proposed that materials with very large
thermal expansion coefficients may function as actuators, and
those with negative thermal expansion coefficents may be of
use as thermal fasteners.3

Perhaps the most common example of a solid exhibiting NTE
is that of ice, which contracts upon melting into liquid water.4

In its solid form, hexagonal ice also undergoes negative thermal
expansion for very low temperatures.1,5 This behavior is a result
of the volume dependence of the transverse normal mode
(phonon) frequencies of this material, characterized by a
negative Grune¨isen parameter.6 Another example of a material
that undergoes NTE is zirconium tungstate, ZrW2O8, which
exhibits this behavior for an extremely large temperature range,
namely, 0.3-1050 K.7 Again, this has been attributed to the

phonon properties of the crystal, specifically low-frequency
phonon modes that may propagate without distorting the WO4

tetrahedra and ZrO6 octahedra that make up the structure.2 Other
examples of materials that exhibit NTE behavior are Lu2W3O12,8

diamond and zincblende semiconductors,9 as well as Sc2-
(WO4)3.10 An essential feature of the aforementioned systems
is their relative openness (low densities) as compared with highly
coordinated structures.

Geometries for multicomponent composite systems that give
rise to extreme NTE behavior have been designed using
topology optimization methods.3 In these cellular materials, each
of three component materials has a nonnegative thermal
expansion coefficient, but upon heating, the materials (two solid
phases and one void phase) undergo overall contraction. An
essential feature of these structures is their local non-convex
(re-entrant) “cells”. This is an example of an inverse problem
in the sense that optimal microstructures are found that yield a
targeted macroscopic property (in this case, NTE behavior).

In previous work,11,12 we investigated whether isotropic
potentials could be found that produce as ground states low-
coordinate crystal structures (e.g., the honeycomb lattice in two
dimensions and the diamond lattice) using inverse optimization
methodologies. Here, we propose a solution to a different inverse
problem: finding an isotropic pair potential that produces a
classical many-particle system in a maximally coordinated,
single-component crystalline state that undergoes NTE under a
wide temperature and pressure range (including zero pressure).
This is a counterintuitive proposition because conventional
wisdom suggests that open structures composed of particles with
highly directional interactions are necessary to observe NTE.
Nonetheless, there is no fundamental reason for excluding this
phenomenon in highly coordinated isotropic systems. Colloidal
dispersions are a possible experimental test-bed system for NTE
behavior, as in these systems interparticle interaction potentials
may be designed by combining several interaction types (e.g.,
electrostatic repulsion, depletion, and dispersion).13 Although
the potential proposed in this paper is not explicitly constructed
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from known colloidal interactions, it is possible that future
developments will allow for such a potential to be devised.

We have found that a sufficient condition for a potential to
give rise to a system with NTE behavior is that it exhibits a
softened interior core within a basin of attraction (as depicted
schematically in Figure 1). Such behavior of the potential may
be characterized by its third derivative with respect to position
at its minimum: if this is positive, the curvature is an increasing
function of position, and the inner part of the basin is “softer”
than the outer part. The potential function proposed in this paper
thus belongs to a class of functions that give rise to NTE
behavior; it will henceforth be called the softened-interior-core,
or “SIC” potential. It is constructed by using a type of
optimization procedure wherein parameters are chosen such that
the potential will give rise to strong NTE behavior (via a large,
positive third derivative of the pair potential with respect tor,
the distance between particles). As will be explained in the next
section, as the temperature is increased in such systems, the
nearest-neighbor distances fluctuate about smaller average
distances, causing NTE behavior. To demonstrate this phenom-
enon, we perform Gibbs-ensemble (constant number of particles,
temperature, and pressure, or “NPT”) Monte Carlo14 simulations
in both two and three dimensions in which the volume of the
system is computed as a function of both ambient temperature
and pressure. We find that, at low temperature, the system has
its strongest negative thermal expansion. As the temperature is
increased, the system contracts further until it reaches a
minimum in volume (or area) and then expands as a function
of temperature before melting. As a basis for comparison, we
perform similar calculations using the Lennard-Jones potential,
which exhibits conventional behavior in that it only expands as
temperature is increased.

In section II, we discuss how the SIC potential was
constructed. In section III, we discuss the details and results of
the energetics calculations and NPT simulations, both for the
SIC potential and for the Lennard-Jones potential. In section
IV, we summarize the results and discuss future work pertaining
to inverse problems in many-particle systems.

II. Theoretical Background

We consider classicalN-particle systems (in two and three
dimensions) with interactions that are pairwise additive and iso-
tropic. Denoting the positions of the particles byr1, ..., rN and
their momenta byp1, ..., pN, the Hamiltonian of the system is

whereVI is a interaction potential that is a purely radial function,
and m is the mass of each particle, taken as unity for the
remainder of this paper. Henceforth, we employ the reduced
temperature of the system,T* ) kBT/ε, where T is the
temperature,kB is Boltzmann’s constant, andε is a parameter
in the pair potential with units of energy.

The isobaric thermal expansion coefficientR is defined as

whereV is the volume of the system, andp is pressure. Of
course,R is negative if the system contracts upon heating. We
seek an interaction potential that gives rise to this effect in an
equilibrium sense.

A. Construction of the SIC Potential. In order to motivate
how we devise a pair interaction potential that gives rise to
negative thermal expansion for two- and three-dimensional
many-particle systems in thermal equilibrium, consider first the
Lennard-Jones potential:

whereεLJ > 0 andσLJ > 0 are energy and length parameters,
respectively. This potential is shown in Figure 2, withεLJ ) ε

and σLJ ) 1/21/6. We adopt this parameter choice for the
Lennard-Jones potential for the remainder of this paper. For a
system ofN particles interacting via the Lennard-Jones potential,
where both the temperature and the pressure are zero, the
equilibrium configuration in two dimensions is the triangular
lattice, and in three dimensions, it is a maximally coordinated
lattice (the hexagonal close-packed or hcp) with the nearest
neighbors lying within the basin of attraction of the potential.
Clearly, the curvature of the potential to the left of the minimum
at r ) 1 is significantly greater than that to the right. This is
reflected in the negative third derivative of the potential at its
minimum, that is,VLJ

(3)(1) ) -1512ε. As a result, as the
temperature is increased from zero, thermal fluctuations cause
the distribution of nearest-neighbor distances to be skewed to
the right. Thus, in thermal equilibrium, the particles are farther
apart on average, and so the system should expand upon a
temperature increase, that is,R > 0. The behavior of the system
should not qualitatively change if the pressure is positive. This
is the mechanism for positive thermal expansion in this system.

Here, we construct an isotropic pair potential with a softened
interior by finding a function with a strongly positive third

Figure 1. Schematic depiction of an isotropic pair interaction with a
softened interior in its basin of attraction. Thermal fluctuations cause
the average nearest-neighbor distance to decrease, resulting in an overall
contraction of the system upon heating. Here, the horizontal black lines
within the basin represent temperature values, and the broken line
represents the thermally averaged nearest-neighbor distance.

H(r1, ..., rN, p1, ...,pN) ) ∑
i<j

N

VI(|ri - rj|) + ∑
i)1

N pi
2

2m
(1)

Figure 2. Lennard-Jones potential, as given in eq 3, withεLJ ) ε and
σLJ ) 1/21/6. As can be easily seen, the curvature of the potential is
greater to the left of the minimum atr ) 1 than to the right. As a
result, when the temperature of a system interacting via this potential
is increased, thermal fluctuations cause the average nearest-neighbor
distance to increase.

R ) 1
V (∂V

∂T)p
(2)

VLJ(r) ) 4εLJ [(σLJ

r )12

- (σLJ

r )6] (3)
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derivative (i.e., increasing curvature) within a basin of attraction
(which should result in NTE behavior, as described in section
I). We choose the Morse potential as a starting point, which is
given by

whererM > 0 andσM > 0 are adjustable parameters. It has a
basin of attraction with a minimum atrM, and its third derivative
evaluated at its minimum is negative; that is,VM

(3)(rM) ) -6εM/
σM

3. Since we seek a potential with a positive third derivative
in its basin, modification of this potential is necessary. We thus
use a rescaling function for distance defined by

whereA > 0, B > 0, andC > 0 are free parameters such that
A - BC > 0. This function has the property that forr < rM, it
asymptotes to a straight line going through the origin with slope
A - BC, but for r > rM, it quickly asymptotes to a straight line
of slopeA + BC. We define the softened-interior-core (SIC)
potential to be

This potential is plotted in Figure 3 withA ) 9.30865,B )
0.1, C ) 9A, rM ) 1, εM ) ε, andσM ) 0.5. With this choice
of parameters, the function is such that its curvature is greater
to the right of its minimum, atr ) 1.00069, than to the left,
and it has a third derivative ofVSIC

(3) (rM) ) 1.13660× 105εM.
Note that the parameter values have been chosen such that this
third derivative is quite large, with the intention of producing
strong NTE behavior. In this sense, optimization of the potential
is performed over the space of functions defined by eqs 5 and
6. The first term on the right side in eq 6 yields a stiffer core
than what would otherwise have been present. As we show in
section III.A., this has the effect of causing a maximally
coordinated structure (face-centered cubic or fcc) to be the
energetically stable structure at zero pressure. This ensures that
the nearest neighbor is located near the bottom of the potential
well. Farther neighbors interact only very weakly. Because of
the softened interior within the basin of attraction of the SIC
potential, given in eq 6, thermal fluctuations cause nearest-
neighbor distances to decrease, on average. This has the effect
of causing an overall contraction of the system. Note that this

argument is independent of whether the system in question is
two or three-dimensional. Thus, we expect the same potential
(eq 6) to yield NTE behavior in both dimensions.

This rescaling procedure could have been applied to the
Lennard-Jones potential rather than the Morse potential. How-
ever, it was found that since the former possesses a much more
strongly negative third derivative at its minimum than the latter
(when their minima are at the same position and depth), the
Morse potential is more suitable for exhibiting a strongly
increasing curvature within its attractive basin.

III. Results and Discussion

In this section, we present lattice sums (Madelung energies
as a function of specific area or volume for a number of crystal
structures), for the Lennard-Jones and SIC potential systems in
two and three dimensions. We thus determine the low temper-
ature thermodynamically stable crystal structure for each, and
using the Maxwell construction,15 we ascertain the zero-
temperature range of stability in pressure. In this section, we
takeε ) 1.

A. Energetics of the Lennard-Jones and SIC Potential.
The lattice sums for the Lennard-Jones systems in two and three
dimensions are shown in Figures 4 and 5, respectively. In the
two-dimensional case, the Madelung energies of three crystal
structures (the triangular lattice, square lattice, and honeycomb
lattice) are plotted as a function of specific area,a. The lowest

Figure 3. SIC potential, as given in eq 6, with the parametersA )
9.30865,B ) 0.1, C ) 9A, rM ) 1, εM ) ε, andσM ) 0.5. As can
easily be seen, the curvature of the potential is greater to the right of
the minimum atr ) 1.00069 than to the left. As a result, when the
temperature of a system interacting via this potential is increased,
thermal fluctuations cause the average nearest-neighbor distance to
decrease.

VM(r) ) εM {exp[2(rM - r)/σM] - 2 exp[(rM - r)/σM]} (4)

r*( r) ) Ar + B {log cosh [C(r - rM)] - log cosh(CrM)} (5)

VSIC(r) ) εM (0.8
r )15

+ VM(r*( r)) (6)

Figure 4. Two-dimensional lattice sums for the Lennard-Jones potential
including the triangular, square, and honeycomb lattices. The lowest
overall energy stucture is the triangular lattice, which is thus the stable
structure at zero pressure. From the Maxwell construction, we find that
the pressure range of stability at zero temperature is 0< p < ∞, and
the range of stability in specific area is 0< a < 0.85.

Figure 5. Three-dimensional lattice sums for the Lennard-Jones
potential including the fcc, bcc, hcp, simple cubic, diamond, wurtzite,
and simple hexagonal lattices. The lowest overall energy stucture is
the hcp lattice, which is thus the stable structure at zero pressure. From
the Maxwell construction, we find that the pressure range of stability
at zero temperature is 0< p < 1240, and the range of stability in
specific area is 0.33< V < 0.65.
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overall energy stucture is the triangular lattice, which is thus
the most stable structure at zero pressure. From the Maxwell
construction, we find that the pressure range of stability at zero
temperature is 0< p < ∞, and the range of stability in specific
area is 0< a < 0.85. The lattice sums for the three-dimensional
system are plotted in Figure 5, with the Madelung energies of
seven crystals being plotted (fcc, body-centered cubic (bcc), hcp,
simple cubic, diamond, wurtzite, and simple hexagonal lattices).
The maximally coordinated structures, namely, fcc and hcp,
clearly have the lowest energies overall and are thus the stable
structures at zero pressure. These two lattices are extremely close
in energy, although the hcp has the lower energy for specific
areas for which the nearest neighbor is near the bottom of the
basin of attraction, which is the regime we study in this paper.
Its pressure range of stability at zero temperature is 0< p <
1240, and its range of stability in specific volume is 0.33< V
< 0.65. Lattice sums for the SIC potential systems in two and
three dimensions (with parametersA ) 9.30865,B ) 0.1,C )
9A, rM ) 1, εM ) ε, andσM ) 0.5) are shown in Figures 6 and
7. For both cases, the same lattices are plotted as in the Lennard-
Jones case. As in the two-dimensional Lennard-Jones system,
the triangular lattice has the lowest overall energy and is thus
the zero-pressure stable structure. The pressure range of stability
at zero temperature is 0< p < ∞ and the range of stability in

specific area is 0< a < 0.87. In the three-dimensional SIC
system, the maximally coordinated structures are again the most
stable and extremely close in energy. However, in this case, it
is the fcc lattice which has the lowest overall energy. Note that
the stiff-core term in the potentialVSIC, the first term on the
right-hand side of eq 6, is essential for the maximally coordi-
nated structures to have lower energies than the other lattices.
Without this term, lower-coordinated structures are energetically
stable at specific volumes for which several neighbor distances
may fall within the basin of attraction of the potential. It follows
that the argument made in section II.A motivating construction
of the SIC potential as a candidate for NTE behavior would
not hold in this case.

In three dimensions, there are two distinct pressure and
density regions in which the fcc lattice is stable; however, we
are only interested in the one in which the nearest neighbor
falls within the basin of attraction of the potential. For this
region, the pressure range of stability at zero temperature of
the fcc lattice in the three-dimensional case is 0< p < 4.5, and
the specific volume range of stability is 0.70< V < 0.71.

B. NPT Monte Carlo Simulation Results. Monte Carlo
simulations were run in the NPT ensemble on the two- and
three-dimensional Lennard-Jones and SIC systems for a number
of pressures and temperatures. In all simulations, Monte Carlo
sampling is carried out until equilibrium is achieved, after which
the fluctuating area/volume is repeatedly sampled until a
sufficiently precise average is obtained. In both two-dimensional
systems, the triangular lattice was used withN ) 1020 particles
in a rectangular simulation cell with periodic boundary condi-
tions imposed. In both three-dimensional systems, the fcc lattice
was used withN ) 864 in a cubic cell also with periodic
boundary conditions. Note that in the case of the Lennard-Jones
system, the hcp, not the fcc, lattice is the thermodynamically
stable structure. However, we employ the latter in simulations
in order to directly compare the results to those of the SIC
system. This choice is justified because of the extreme closeness
in Madelung energies of the fcc and hcp lattices. To confirm
that the maximally coordinated lattices were indeed the ground
states for each of the four systems discussed here, annealing
simulations were performed in which each system was cooled
through its freezing point. In each case, a maximally coordinated
lattice resulted as the appropriate equilibrium crystal state.

The area/volume dependence on temperature of the Lennard-
Jones systems in two and three dimensions is shown in Figures

Figure 6. Two-dimensional lattice sums for the SIC potential including
the triangular, square, and honeycomb lattices. The lowest overall
energy structure is the triangular lattice, which is thus the stable structure
at zero pressure. From the Maxwell construction, we find that the
pressure range of stability at zero temperature is 0< p < ∞, and the
range of stability in specific area is 0< a < 0.87.

Figure 7. Three-dimensional lattice sums for the SIC potential
including the fcc, bcc, hcp, simple cubic, diamond, wurtzite, and simple
hexagonal lattices. The lowest overall energy stucture is the hcp lattice,
which is thus the stable structure at zero pressure. From the Maxwell
construction, we find that the pressure range of stability at zero
temperature is 0< p < 4.5, and the range of stability in specific area
is 0.70< V < 0.71. There is another region of stability of this system
at significantly smaller specific volume, but this is irrelevant to the
present work.

Figure 8. Specific area as a function of temperature for a number of
different pressure values for the two-dimensional Lennard-Jones system.
These results are obtained from NPT Monte Carlo simulations withN
) 1040 particles and periodic boundary conditions. In its crystalline
(triangular) state, this system expands when temperature is increased
for all pressures and temperatures. Note that kinks in the curves indicate
melting of the crystal.
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8 and 9, respectively. The plots show results for a number of
pressure values,p ) 0, 0.5, 1.0, 1.5, 2.0, and 2.5. The data
show that, in both cases, the solid expands until it melts. The
sharp bends or “kinks” in the curves indicate the first-order
melting transition.

Simulation results for the SIC potential systems in two and
three dimensions (with parameter valuesA ) 9.30865,B ) 0.1,
C ) 9A, rM ) 1, εM ) ε, andσM ) 0.5) are shown in Figures
10 and 11, respectively. The data show that for low temperature
and for each pressure value (amongp ) 0, 0.5, 1.0, 1.5, 2.0,
and 2.5), in both two and three dimensions, the system contracts.
At a certain pressure-dependent temperature, the thermal expan-
sion coefficent passes through zero and becomes positive (at
the minima of the curves). At higher temperatures, the system
undergoes positive thermal expansion until it melts. The
temperature at which zero thermal expansion is achieved is an
increasing function of the pressure.

For the two-dimensional SIC system, we show in Figure 12
two configurations of the system at temperaturesT* ) 0.0 and
T* ) 0.3, with both at pressurep ) 1.0. Arrows show the
direction that the particles move when the temperature is
increased fromT* ) 0.0 toT* ) 0.3.

The radial distribution function,g(r), is plotted for the three-
dimensional case in Figure 13, for pressurep ) 1.0 and
temperaturesT* ) 0.1, 0.2, and 0.3. While the first peak (near
r ) 1) appears to reach its maximum at nearly the same distance

Figure 9. Specific volume as a function of temperature for a number
of different pressure values for the three-dimensional Lennard-Jones
system. These results are obtained from NPT Monte Carlo simulations
with N ) 864 particles and periodic boundary conditions. In its
crystalline (fcc) state, this system expands when temperature is increased
for all pressures and temperatures. Note that the “kinks” in the curves
indicate melting of the crystal.

Figure 10. Specific area as a function of temperature for a number of
different pressure values for the two-dimensional SIC system. These
results are obtained from NPT Monte Carlo simulations withN ) 1040
particles and periodic boundary conditions. In its crystalline (triangular)
state, this system undergoes NTE for low temperatures, but as
temperature is increased, thermal expansion passes through zero and
then becomes positive. Note that the “kinks” in the curves indicate
melting of the crystal.

Figure 11. Specific volume as a function of temperature for a number
of different pressure values for the three-dimensional SIC system. These
results are obtained from NPT Monte Carlo simulations withN ) 864
particles and periodic boundary conditions. In its crystalline (fcc) state,
this system undergoes NTE for low temperatures, but as temperature
is increased, thermal expansion passes through zero and then becomes
positive. Note that the “kinks” in the curves indicate melting of the
crystal.

Figure 12. Section of two configurations of the SIC system, one at
T* ) 0.0 (dark) and the other atT* ) 0.3 (light). The configurations
are snapshots taken from NPT Monte Carlo simulations. Arrows indicate
the displacement of the particles upon heating from the former
temperature to the latter. The ambient pressure isp ) 1.0. The system
appears to undergo a simple rescaling.

Figure 13. Radial distribution function for the SIC system in three
dimensions atp ) 1.0 for three temperatures,T* ) 0.1, 0.2, and 0.3.
As a result of the increasing curvature of the SIC potential, given in
eq 6, near its minimum, the first peak is increasingly skewed to smaller
r as the temperature is increased. The second peak is not present in the
perfect fcc lattice and represents a shearing of the system.
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for each temperature, the left tail of the first peak extends further
and further to the left as temperature is increased. This is an
indicator of the NTE mechanism of the system. Here, thermal
fluctuations cause the nearest-neighbor distance distribution to
widen, but the increasing curvature asr increases of the
potential,VSIC, causes this distribution to be skewed toward
lower r. The average volume of the system decreases as a result.
Note that this is exactly the mechanism of negative thermal
expansion in the two-dimensional SIC system as well. Figure
13 also shows an anomalous second peak not present in the
radial distribution function of the fcc lattice. This indicates that
in additon to the volume change, the system undergoes a
shearing as temperature is increased from zero.

IV. Conclusions

In this paper, we have proposed an isotropic pair interaction
potential for a system of classically interacting particles that
gives rise to negative thermal expansion in maximally coordi-
nated lattices in both two and three dimensions. Previously, this
phenomenon had only been observed in low-density open
crystals1 and in three-component composites.3 The key feature
of the proposed potential,VSIC(r), which is based on a
modification of the Morse potential, is a basin of attraction
wherein the curvature is an increasing function ofr. With this
property, thermal fluctuations cause the nearest-neighbor dis-
tances in the maximally coordinated lattices to decrease on
average, resulting in an overall contraction.

Using NPT Monte Carlo simulations, we compared the
behavior of systems interacting viaVSIC(r) to those interacting
via the standard Lennard-Jones interaction potential. We found
that NTE remained present for the former over a large
temperature and pressure range, with zero pressure included in
the latter. At sufficiently high temperatures (still below the
melting point), the thermal expansion coefficent goes to zero
and then becomes positive. The proposed potential may be seen
as a possible solution to an inverse problem: that of finding a
microscopic interaction that yields a desired macroscopic
property. Indeed, by adjusting the parameters of the Morse
potential, given in eq 4 and in the rescaling function given in
eq 5, the thermal expansion coefficient may be manipulated.

In future work, we aim to continue the inverse problem
program of finding isotropic interaction potentials that yield
systems with targeted material properties. One example of such
a problem is finding isotropic potentials that favor disordered
systems as well as certain types of defects in crystalline solids.
Another example is the problem of designing an isotropic
interaction potential that yields a material with negative Poisson
ratio, that is, wherein compression in one direction causes
compression in the orthogonal direction. This effect has been
studied experimentally and theoretically in composite materi-
als,16 in foam structures,17,18 and in atomic solids.19 Another

challenging open problem is to find an isotropic pair potential
that produces a substance that contracts upon melting and then
continues to contract over some temperature range (as is the
case in water). Last, there is the challenge of designing an
isotropic pair potential that yields a system that freezes into a
crystalline state upon an increase in temperature (“inverse
melting”), over a wide temperature and pressure range. Both
isotopes of helium exhibit this property,20,21and simulations have
shown that a modified Gaussian-core interaction does as well.22

This counterintuitive behavior is of fundamental interest because
it challenges the conventional wisdom of equilibrium fluid-
solid phase transitions.
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